Magnetic Cationic Amylose Nanoparticles Used to Deliver Survivin-Small Interfering RNA for Gene Therapy of Hepatocellular Carcinoma In Vitro
نویسندگان
چکیده
Amylose is a promising nanocarrier for gene delivery in terms of its good biocompatibility and high transfection efficiency. Small interfering RNA against survivin (survivin-siRNA) can cause tumor apoptosis by silencing a hepatocellular carcinoma (HCC)-specific gene at the messenger RNA level. In this study, we developed a new class of folate-functionalized, superparamagnetic iron oxide (SPIO)-loaded cationic amylose nanoparticles to deliver survivin-siRNA to HCC cells. The cellular uptake of nanocomplexes, cytotoxicity, cell apoptosis, and gene suppression mediated by siRNA-complexed nanoparticles were tested. The results demonstrated that folate-functionalized, SPIO-loaded cationic amylose nanoparticles can mediate a specific and safe cellular uptake of survivin-siRNA with high transfection efficiency, resulting in a robust survivin gene downregulation in HCC cells. The biocompatible complex of cationic amylose could be used as an efficient, rapid, and safe gene delivery vector. Upon SPIO loading, it holds a great promise as a theranostic carrier for gene therapy of HCC.
منابع مشابه
An RGD-Modified MRI-Visible Polymeric Vector for Targeted siRNA Delivery to Hepatocellular Carcinoma in Nude Mice
RNA interference (RNAi) has significant therapeutic promise for the genetic treatment of hepatocellular carcinoma (HCC). Targeted vectors are able to deliver small interfering RNA (siRNA) into HCC cells with high transfection efficiency and stability. The tripeptide arginine glycine aspartic acid (RGD)-modified non-viral vector, polyethylene glycol-grafted polyethylenimine functionalized with s...
متن کاملTheranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging
Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethyle...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملDown regulation of surviving gene and up regulation of p53 gene expression by siRNA induces apoptosis in human hepatocellular carcinoma cell line HepG2
Survivin gene may be a good target for cancer gene therapy because it is over expressed in a variety of human tumors including human hepatocellular carcinoma but not in differentiated adult tissues. To explore the effects of the siRNA of survivin gene inducing apoptosis in human hepatocellular cancer cells, three siRNAs cpusiRNA1, cpusiRNA2 and cpusiRNA3 were designed and transferred into human...
متن کامل